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ABSTRACT

Accurate forecasts of precipitation during landfalling atmospheric rivers (ARs) are critical because ARs

play a large role in water supply and flooding for many regions. In this study, we have used hundreds of

observations to verify global and regional model forecasts of atmospheric rivers making landfall in Northern

California and offshore in the midlatitude northeast Pacific Ocean. We have characterized forecast error and

the predictability limit in AR water vapor transport, static stability, onshore precipitation, and standard at-

mospheric fields. Analysis is also presented that apportions the role of orographic forcing and precipitation

response in driving errors in forecast precipitation after AR landfall. It is found that the global model and the

higher-resolution regional model reach their predictability limit in forecasting the atmospheric state during

ARs at similar lead times, and both present similar and important errors in low-level water vapor flux, moist-

static stability, and precipitation. However, the relative contribution of forcing and response to the incurred

precipitation error is very different in the two models. It can be demonstrated using the analysis presented

herein that improving water vapor transport accuracy can significantly reduce regional model precipitation

errors during ARs, while the same cannot be demonstrated for the global model.

1. Introduction

Atmospheric rivers (ARs) play a vital role in delivering

rain and snow to western North America (Ralph et al.

2004; Leung andQian 2009; Guan et al. 2010; Ralph et al.

2010; Dettinger et al. 2011; Neiman et al. 2013). In some

regions, as much as 50% of annual precipitation falls on

days when an AR is present (Rutz et al. 2014). ARs play

an important role in regional recovery from drought

(Dettinger 2013) and have been linked to major flooding

events in western North America and elsewhere (Ralph

et al. 2006; Neiman et al. 2008, 2011; Lavers et al. 2011;

Moore et al. 2012). Despite the importance of ARs to

water supply and flood risk, the precipitation resulting

from ARs remains poorly forecast (Ralph et al. 2010;

Junker et al. 2009; Wick et al. 2013b; Lavers et al. 2016).

The processes that cause AR precipitation include cloud

microphysics (submeter scales), surface moisture fluxes

(from submeter to mesoscales), orographic uplift by ter-

rain (from a few kilometers to synoptic scales), and fluid

dynamical processes. The latter can operate on the me-

soscale (e.g., narrow cold frontal rainbands; Browning

and Roberts 1996), synoptic, and global scales. Regard-

less of the numerical weather prediction (NWP) model

one chooses to create a precipitation forecast, some of

these scales will not be resolved.

Global numerical weather prediction (GNWP)models,

those that can explicitly simulate the largest weather

scales on Earth, can also explicitly resolve the scales of

mesoscale fluid dynamic features, but do not explicitly

resolve the smallest orographic uplift, surface flux, or

cloud microphysics scales. To explicitly resolve finer

spatial scales, the weather prediction community has

traditionally employed regional numerical weather pre-

diction (RNWP) models to dynamically downscale

GNWP forecasts [e.g., the National Oceanographic and

Atmospheric Administration (NOAA) North American
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and High-Resolution Rapid Refresh models (Weygandt

et al. 2009), the Deutscher Wetterdienst Consortium for

Small-Scale Modeling (Baldauf et al. 2011)]. The RNWP

models explicitly resolve finer scales without the aid of

empirical parameterization, but most operational weather

prediction systems that rely uponRNWPare still unable to

explicitly resolve the finest scales (cloud microphysics,

surface fluxes, small-scale terrain variability) important to

landfalling AR precipitation. In the near future, numerical

techniques that allow consistent solutions of the fluid

dynamics equations across computational grids with mul-

tiple or adjustable resolutions promise to ‘‘unify’’ global

and very fine scales in numerical weather prediction [e.g.,

Model Prediction Across Scales (Skamarock et al. 2012),

NOAA’s Next Generation Global Prediction System

(Michalakes et al. 2015)]. Even with this advance, NWP

models will retain an effective limit to explicit spatial res-

olution that will lie somewhere between scales of topo-

graphic variability and fine turbulence scales.We note that

while several authors havemeasuredNWPmodel error for

ARs (Junker et al. 2009; Ralph et al. 2010; Kim et al. 2013;

Wick et al. 2013b; Swain et al. 2015; Lavers et al. 2016), the

predictability limit—the time beyond which it is no longer

possible to predict the state of a system, given knowledge

of current and past states, with a desired level of accuracy

(American Meteorological Society 2017)—for NWP

forecasts of AR and their related atmospheric fields has

not been established.Additionally, it is not knownwhether

RNWP may improve upon the predictability limit.

Ralph et al. (2013a, hereafter R13) presented a useful

way to apportion the impacts of scale-dependent pro-

cesses on precipitation. The authors used a long record

of observations at an atmospheric river observatory

(ARO; White et al. 2009, 2013) to demonstrate that the

amount of orographic precipitation is linearly related to

the bulk upslope flux (BUF) of atmospheric water vapor

content by the horizontal wind in a lower tropospheric

layer (see their Fig. 5). It has been demonstrated that

BUF is also a skillful predictor of instantaneous pre-

cipitation rate (Neiman et al. 2002, 2009). Other authors

have similarly found that orographic precipitation

amount is related to the rate of water vapor flux di-

rected normal to the terrain (Alpert 1986; Barros and

Lettenmaier 1994; Sinclair 1994; Colle 2004; Smith and

Barstad 2004; Barstad and Smith 2005). These studies

examined many regions other than northern coastal

California; thus, the importance of low-level moisture

flux and the linear relationship found by R13 is appli-

cable to midlatitude orographic precipitation in general.

R13 and Neiman et al. (2009) convincingly demon-

strated that the orographic precipitation response to the

forcing (vapor transport at approximately low-level jet

height) upon a mountain range applied by an AR is

linear to first order. If the predictability limit and pre-

dictive skill during anAR can be improved, will this lead

to more accurate precipitation prediction? An impor-

tant step in demonstrating this for any modeling system

will be to demonstrate that the modeled orographic

precipitation response is correct. This precipitation re-

sponse is somewhat scale dependent, though discussion

in Neiman et al. (2002, 2009), White et al. (2009), Smith

et al. (2010), and Kingsmill et al. (2013) demonstrates

that the horizon between the forcing scale and the

response scale is not identical. Nonetheless, a large part

of the simulated forcing response relies upon high-

resolution terrain, and we thus expect this to improve

with higher-resolution modeling systems.

In the current study, we intend to meet the following

goals by analyzing forecasts made by two separate

models, a GNWP [the Global Forecast System refor-

ecasts (GFSRe; Hamill et al. 2013)] and an RNWP [the

Weather Research and Forecast (WRF) Model

(Skamarock 2008)]:

1) Characterize the predictability limit of atmospheric

state and structure near and within ARs in the

midlatitude northeast Pacific Ocean (approximately

between latitudes 258 and 458N). To do so, we will

examine the dependence of errors on forecast lead

times that are as great as 7 days.

2) Measure errors in the simulated orographic forcing–

response relationship during landfalling ARs.

3) Comment on the suitability of RNWP for forecasting

precipitation during ARs and use the lessons learned

from goals 1 and 2 to suggest model improvements

that are most likely to improve precipitation fore-

casts during landfalling ARs.

We note that all analyses will be supported by obser-

vations (direct verification); the effort to address goal 1

represents the most comprehensive direct model verifi-

cation for AR forecasts by RNWP yet undertaken, and

the effort in addressing goal 2 represents a unique

method that we believe can be applied to a wide range of

numerical weather prediction systems.We also note that

evaluating errors incurred by subgrid-scale parameteri-

zations is outside the scope of the current work. All

verification analyses are performed with forecasts and

observations that are valid over the northeast Pacific or

Northern California. Therefore, not all results may

generally apply to other regions of the globe affected by

ARs. We will make note in the text where results apply

beyond the region investigated.

The remainder of this manuscript will be organized as

follows. The GFSRe, WRF, and verification datasets

used will be described in section 2. Analysis methods,

including the method of apportioning precipitation
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error by scale, will be described in section 3. Section 4

will present the results of the verification analyses, and

section 5 will summarize results and suggest improve-

ments in NWP that may lead to better precipitation

forecasts during landfalling ARs.

2. Data and forecast models

a. Atmospheric river observatory

The California Department of Water Resources

(DWR) operates an ARO comprising two individual

stations, Bodega Bay (BBY) and Cazadero (CZC) in

California, as part of the Enhanced Flood Response and

Emergency Preparedness (EFREP) network (White et

al. 2009, 2013). The BBY station is situated on the coast

at sea level and is designed to monitor horizontal vapor

flux, integrated water vapor (IWV), and horizontal winds

in the atmospheric river low-level jet (LLJ) as it impinges

upon the orographically productive coastal mountain

ranges. The CZC station is located north of Bodega Bay at

the top of a prominent ridge. The CZC station reports

precipitation, vertical S-band radar reflectivity, and pre-

cipitation drop size distributions during AR conditions. By

adapting the techniques of R13, we will use the couplet of

stations to investigate orographic forcing (hereafter ‘‘forc-

ing’’) near the coastal edge of the Russian RiverWatershed

(RRW) through bulk upslope flux measured at BBY and

orographic precipitation response (hereafter ‘‘response’’)

via accumulated precipitation measured at CZC.

BUF is calculated following the methods of Neiman

et al. (2002, 2009), in which the controlling layer

(800–1200m MSL) winds are multiplied by the local

IWV and projected onto the mountain orthogonal di-

rection. Controlling layer wind is calculated from the

449-MHz wind profiler at BBY. IWV is calculated via

radio occultation from the BBY GPS Trimble receiver.

Rainfall accumulation at CZC is measured by a tipping-

bucket rain gauge and reported to 0.1-mm precision.

Hourly, quality-controlled BUF and accumulated rain-

fall are available from the NOAA Earth System Re-

search Laboratory via anonymous ftp server.

b. GPS-enabled soundings

Airborne dropsondes from the CalWater 2 early start

(CWES) and CalWater 2015 (CW2) intensive observing

periods (Ralph et al. 2016) are used extensively in our

analyses of forecast skill and predictability limit. Each

sounding occurred during a midlatitude northeast Pacific

AR transect performed by CalWater aircraft. An exam-

ple, with two transects used in this study, is shown in

Fig. 1. Transects were executed to maintain a flight path

perpendicular to the direction of troposphere integrated

water vapor flux, and 179 sondes from 15 transects taken

during10 separateARflights areused in this study (Table1).

Herein, an AR is only considered for analysis if maximum

integrated vapor transport (IVT; Cordeira et al. 2013) ex-

ceeds 500kgm21 s21 by direct observation or by ARO

proxy (see section 2c). This threshold will herein be referred

to as the ‘‘moderateAR’’ threshold. It reflects theminimum

IVT typically leading to significant precipitation upon land-

fall by a northeast Pacific AR and has emerged through

discussions during the first International Conference on

Atmospheric Rivers (Ralph et al. 2017). We require a

dropsonde transect to cross the full width of the AR core.

Herein, the AR core boundaries are defined by the isopleth

where IVT exceeds 500kgm21 s21. If the transect includes

dropsondes that recorded IVT$ 500kgm21 s21 and at least

one poleward and one equatorward dropsonde that re-

corded IVT , 500kgm21 s21, then the transect is consid-

ered to have sampled the full AR core. Last, transect

terminal dropsondes must be greater than 100km from the

WRF lateral boundaries to reduce the chance that imprecise

advection closure or the boundary damping layer impact

the forecast soundings. Soundings were used to estimate

AR environment variables: 500-hPa geopotential height

z500, IVT, IVW, and 925-hPa equivalent potential tem-

perature u925e . Soundings were also used to estimate AR

core variables: moist Brunt–Väisälä frequency Nm, which

is a measure of static stability that accounts for the ef-

fect of moisture, and the discrete (layer) IVT dIVT5
2(1/g)

Ð p2
p1
uqy dp, where u is the horizontal wind vector,

qy is the water vapor mixing ratio, and the integral is

performed by requiring p2 5 p1 2 25 hPa and iterating

p1 every 25 hPa from 1000 to 325 hPa.

c. Forecast periods

We simulated two groups of ARs occurring between

December 2014 and March 2016. These simulations

became the forecast datasets that were used to evaluate

the GFSRe and WRF predictability limits and to mea-

sure errors in the simulated orographic forcing–response

relationship for each model. The first group, OCN (for

oceanic AR events), included 15 moderate ARs in the

midlatitude northeast Pacific Ocean for which GPS-

enabled dropsondes were available during a CalWater

transect (see Table 1). The OCN airborne observations

represent a rich survey of the vertical and transport-

normal structures of oceanic AR. The OCN cases were

therefore used to investigate the ability of GFSRe and

WRF to accurately simulate the transport-normal struc-

ture of orographic forcing (e.g., vertical distribution of

vapor transport and moist static stability) at forecast

lead times up to 7 days.

Many of the ARs in the OCN cases did not cause

significant precipitation over land, so a second group

of forecast periods [LND (for landfalling AR events);

JULY 2018 MART IN ET AL . 1099



see Table 2] was chosen to investigate GFSRe and

WRF quantitative precipitation forecast (QPF) skill

and apportionment of QPF error among scales during

moderate ARs impacting the RRW. LND AR cases

were chosen using the following criteria:

1) The ARO must have recorded AR conditions

following R13 for 24 or more hours.

2) During AR conditions at the ARO, IVT must have

exceeded 500 kgm21 s21, or BUF must have ex-

ceeded 300mmms21. The latter has been found to

be a proxy for moderate AR conditions.

3) The 10 strongest ARs by storm-integrated BUF that

occurred between 1 December 2014 and 31 March

2016 and met criteria 1 and 2 were grouped into the

LND case list.

Event start and end for LND cases were declared based

upon hourly AR conditions at the ARO following R13.

Event duration varies from 24 to 54 h, with a median

length of 32 h (Table 2). Storm-total (ST) quantitative

precipitation estimation (QPE) within the RRW during

LND cases is estimated by the NCEP Stage IV 4-km

gridded product (Lin and Mitchell 2005).

FIG. 1. ERA-Interim reanalysis IWV for 1200 UTC 8 Feb 2014. Overlaid are the dropsondes

from two aircraft transects during CalWater early start campaign IOP 2. Individual dropsonde

locations are depicted by white circles and numbered in chronological order. These correspond

to OCN cases CWES 2 and CWES 3 from Table 1. The text box summarizes some impacts of

this AR described in Ralph et al. (2016). Black boxes ‘‘a’’ and ‘‘b’’ correspond to domain

boundaries for WRF 9 km and WRF 3 km, respectively.

TABLE 1. OCN cases simulated for this study. More information regarding IOPs and aircraft can be found in Ralph et al. (2016).

IOP Aircraft Transect start Transect end

CWES 1 NOAA G-IV 2021 UTC 7 Feb 2014 2208 UTC 7 Feb 2014

CWES 2 NOAA G-IV 2050 UTC 8 Feb 2014 2146 UTC 8 Feb 2014

CWES 2 NOAA G-IV 2243 UTC 8 Feb 2014 2338 UTC 8 Feb 2014

CWES 3 NOAA G-IV 1903 UTC 11 Feb 2014 2124 UTC 11 Feb 2014

CWES 4 NOAA G-IV 1734 UTC 12 Feb 2014 1903 UTC 12 Feb 2014

CWES 5 NOAA G-IV 1833 UTC 13 Feb 2014 2058 UTC 13 Feb 2014

CW2 1 NOAA G-IV 2114 UTC 15 Jan 2015 2246 UTC 15 Jan 2015

CW2 1 NOAA G-IV 2307 UTC 15 Jan 2015 0020 UTC 16 Jan 2015

CW2 2 NOAA G-IV 2245 UTC 17 Jan 2015 0030 UTC 18 Jan 2015

CW2 2 NOAA G-IV 0130 UTC 18 Jan 2015 0307 UTC 18 Jan 2015

CW2 4 NOAA G-IV 2004 UTC 24 Jan 2015 2052 UTC 24 Jan 2015

CW2 4 NOAA G-IV 2126 UTC 24 Jan 2015 2303 UTC 24 Jan 2015

CW2 6 NOAA G-IV 2045 UTC 6 Feb 2015 2146 UTC 6 Feb 2015

CW2 6 NOAA G-IV 2159 UTC 6 Feb 2015 2259 UTC 6 Feb 2015

CW2 6 NOAA G-IV 2312 UTC 6 Feb 2015 0004 UTC 7 Feb 2015
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d. GEFS reforecasts

The National Centers for Environmental Prediction

(NCEP) Global Ensemble Forecast System (GEFS)

model serves as the GNWP for the tests presented

herein. We required that all forecast periods used the

same deterministic model. To satisfy this requirement,

we acquired control member forecasts from the NOAA

Global Ensemble Reforecast Dataset (Hamill et al.

2013). GFSRe forecasts are initialized once per day at

0000 UTC and run to 192 h lead time. GFSRe serves as

theWRFparentmodel in this study. TheGFSRe dataset

is produced with GEFS version 9.0.1, run at approxi-

mately 40-km native resolution. Since 15 January 2015,

NOAA has run an updated GFS deterministic forecast

with a native resolution of approximately 13 km. Be-

cause the majority of the OCN case skill calculations

require forecasts initialized before this date, we did not

choose the higher-resolution deterministic GFS for the

primary GNWP in this study. We have run parallel

simulations where possible using the deterministic GFS

to verify that key results do not change significantly

given the higher-resolution GNWP. The analyses cre-

ated from these parallel simulations can be found in the

online supplemental material. Methods of generating

WRF from the higher-resolution GNWP (GFS 0.25; see

supplemental material) and methods of postanalysis are

identical to those presented herein.

e. WRF

The open-source WRF-ARW model (Skamarock

2008) is used in this study. We configured WRF with two

domains utilizing horizontal resolutions of 9 and 3km

(hereafterWRF 9kmandWRF 3km, respectively). Both

WRF 9km andWRF 3km are configured with 60 vertical

levels with compressed spacing near the 925- and 300-hPa

levels in a U.S. Standard Atmosphere sounding. Static

land surface information for WRF simulations is gener-

ated from theUSGS land-use database (Wang et al. 2012)

at a resolution of 5 (2) arc-min for WRF 9km (3km).

WRF domains and parameterized physics options are

listed in Table 3. The domains, vertical spacing, and

nesting ratio were chosen based on sensitivity tests using

the dropsondes from the OCN case list to measure fore-

cast performance in IVT. Parameterized physics options

were chosen according to author experience and common

practice in other WRF NWP forecast efforts. We stress

that the WRF parameterized physics used herein have

not been objectively optimized.

The WRF 9km domain has a much larger Earth-

relative footprint (Fig. 1, box ‘‘a’’) and utilizes

interpolated forecasts from GFSRe as boundary condi-

tions. Initial conditions for both WRF domains are in-

terpolated from the GFSRe analysis to the WRF 9km

and WRF 3km grids using the WRF preprocessor

(Wang et al. 2012). The WRF 3km domain Earth-

relative footprint (Fig. 1, box ‘‘b’’) covers most of the

state of California and portions of western Nevada and

southern Oregon. The RRW, where precipitation is

verified in this study, lies near the center of the 3-km

domain. The WRF domain configurations described

here are also used to create operational forecasts at the

Center for Western Weather and Water Extremes

(CW3E; http://cw3e.ucsd.edu/). The CW3E operational

model, named West-WRF, has the primary goal of

predicting extreme precipitation events (especially

those associated with ARs) that are key to water supply

and flooding in the region (Dettinger et al. 2011; Ralph

and Dettinger 2012; R13). As they are further de-

veloped, West-WRF operational forecasts will be ori-

ented to the special requirements posed by western U.S.

extreme precipitation. These requirements were sum-

marized recently in a study carried out in support of the

Western States Water Council’s request for a vision for

future observational needs for extreme precipitation

monitoring, prediction, and climate trend detection

(Ralph et al. 2014). This summary built upon more

than a dozen reports from various agencies and science

groups over the previous few years and on experience

TABLE 2. LND cases simulated in this study.

Case Start at ARO Duration (h) NWP valid start

1 1500 UTC 10 Dec 2014 32 1200 UTC 10 Dec 2014

2 0400 UTC 6 Feb 2015 27 0000 UTC 6 Feb 2015

3 0900 UTC8 Feb 2015 25 0600 UTC 8 Feb 2015

4 1300 UTC 9 Dec 2015 26 1200 UTC 9 Dec 2015

5 1400 UTC 20 Dec 2015 47 1200 UTC 20 Dec 2015

6 0400 UTC 17 Jan 2016 25 0000 UTC 17 Jan 2016

7 1700 UTC 28 Jan 2016 32 1800 UTC 28 Jan 2016

8 2200 UTC 5 Mar 2016 33 1800 UTC 5 Mar 2016

9 0800 UTC 9 Mar 2016 42 0600 UTC 9 Mar 2016

10 1500 UTC 12 Mar 2016 37 1200 UTC 12 Mar 2016
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in developing California’s unique observing network

(White et al. 2013) and from NOAA’s Hydrometeo-

rology Testbed (Ralph et al. 2013b). In addition to op-

erational forecast goals, West-WRF is designed as a

platform from which to evaluate the sources of forecast

error and their relationship to physical processes.

3. Methods

a. The verification matrix procedure

The predictability limit (goal 1 in the introduction)

has been estimated from a number of forecasts with

systematically varying lead time. These forecasts are

generated using the verification matrix procedure, de-

scribed thusly. To estimate the skill for a single event at

n lead times, one needs n forecasts that verify at the time

of event ty, each generated at a unique lead time ti. If

this is to be done for m events with l unique observa-

tions, one can evaluate the skill at ti 5 1, . . . , n by

generating a set of at most m3 n forecasts. In practice,

Nf ,m3 n forecasts are started, each from a unique

initial time t0. Forecasts are grouped together according

to ti 5 ty 2 t0. The estimate of forecast skill at each lead

time i5 1, . . . , nwill then be estimated from a sample of

m3 l observation–forecast pairs. Verification matrices

herein are generated by nominal lead times of

24–168 h with an increment of 24. Events are either the

period of AR conditions at the ARO or the median time

of dropsonde release in an OCN case AR transect.

These times do not fall on 0000 UTC. For this reason,

we were required to bin our lead times in order to

generate a full verification matrix with a nominal time

resolution of 24 h. For 24-h resolution, we create a ma-

trix of forecasts sorted into seven lead-time bins. How-

ever, for events containing a single observation [such as

the orographic forcing and response (section 3b)], we

combine every other lead-time bin in order to increase

the sample size. The result is a matrix of forecasts sorted

into three lead-time bins. Table 4 lists the nominal lead

times and their bin boundaries for the seven and three

lead-time matrices used in this study.

b. Estimates of predictive skill

For AR environment variables, we define the pre-

dictive skill of each model’s forecast as the Brier skill

score (BSS; Winterfeldt et al. 2011) using GFSRe clima-

tology (1991–2015, December–March) as the reference

forecast. The BSS is equivalent to measuring the frac-

tional reduction in error variance by the more accurate

forecast. The predictability limit in any AR environment

variable is considered to be reached when BSS # 0.

GFSRe climatology is not available at full vertical reso-

lution, and therefore it is not feasible to estimate the

model climatology for the AR core variables. Instead,

the predictability limit is crossed for dIVT and N2
m when

the Student’s t test is significant at p, 0:05 when com-

paring forecasts of the OCN case core variables to their

observed counterparts. This is equivalent to choosing the

following desired level of forecast accuracy: the proba-

bility that OCN case forecasts are chosen from the same

distribution as theOCNcase observations remains greater

than 5%.

Qualitative and quantitative methods are used to assess

accuracy in QPF for the models considered. We compute

histograms from each model’s QPF for each lead time in

the three lead-time verification bins and compare to his-

tograms computed from theNCEP Stage IV STQPE. The

population is drawn from all events and all Stage IV grid

TABLE 4. Verification matrices (see section 3a) used in this study.

Bin 7-bin boundaries (h) 3-bin boundaries (h)

1 12 # ti # 35 12 # ti # 59

2 36 # ti # 59 60 # ti # 107

3 60 # ti # 83 108 # ti # 155

4 84 # ti # 107 —

5 108 # ti # 131 —

6 132 # ti # 155 —

7 156 # ti # 179 —

TABLE 3. Domain attributes and parameterized physics options for WRF configurations in this study.

Option Outermost domain Nest domain

dx 9 km 3 km

nx; ny; nz 484; 324; 60 403; 391; 60

Time step Adaptive, ;45 s Adaptive, ;15 s

Cumulus Grell 3D —

Land surface Noah Noah

Cloud microphysics Thompson New Thompson New

Planetary boundary layer Yonsei University Yonsei University

Surface layer Monin–Obukhov Monin–Obukhov

Shortwave radiation GSFC GSFC

Longwave radiation RRTM RRTM

Topographic wind No Yes

1102 JOURNAL OF HYDROMETEOROLOGY VOLUME 19



points within the RRW. For quantitative measures, we cal-

culate the mean, standard deviation, and root-mean-square

of the quantity QPF 2 QPE at all NCEP Stage IV grid

points and for all models and lead times as appropriate. Bi-

linear interpolation is used to transform QPF on the WRF

3km and GFSRe grids to the NCEP Stage IV grid.

We also estimate the normalized error of GFSRe and

WRF 3km in reproducing the observed storm-total bulk

upslope flux of moisture (ST BUF) and precipitation Pr

relationship at theARO (goal 2 in the introduction).We

follow R13 in defining a forcing–response relationship

wherein the forcing is ST BUF and the response is

storm-total precipitation (ST Pr). The total accuracy in

simulating this relationship will be measured by the

multifactor orographic forcing–response error:

e
xy
5 e

x
1 e

y
5E

"
(x2 x

o
)2

V[x
o
]

1
(y2 y

o
)2

V[y
o
]

#
, (1)

where x and y are the forcing (ST BUF) and ST Pr, re-

spectively. The subscript o refers to the observed values

of the given quantity, and E[ ] and V[ ] refer to the ex-

pectation and variance operators, respectively.

c. Linearization of the forcing and response
relationships, reduction in error

We also assess whether reducing error in the forcing

or reducing error in the simulated response, in-

dependent of forcing, leads to a larger reduction of error

in the forecast ST Pr.

Let ey 5E[ (y2 yo)
2]/V[yo] represent the normalized

mean-square error in the forecast ST Pr compared to

that measured by the ARO. We can also define

e
y
;

E[F(x)2 y2o]

V[y
o
]

, (2)

where F(x); f (x) is the linearized approximation of the

response function described in R13. We can estimate

F(x) from each model and from observations by least

squares approximation. An example is shown in Fig. 2a.

The figure shows the ST BUF and ST Pr measured at the

ARO during 171 rain events (gray dots). Here, FðxÞ is

approximated by applying a least squares fit the individ-

ual data points. The result is the red line in the figure.

Also shown in Fig. 2a are observed (orange circle),

GFSRe (orange asterisk), and WRF 9km ST Pr and ST

BUF for a single LND case evaluated in this study. The

line segments A andB on the figure graphically represent

the nondimensional distance that exy is designed to

measure. Let the quantity Fo(x) represent the ‘‘perfect

response’’ approximation. It is the ST Pr that results from

applying the linearized local response function derived

from a least-squared fit of the observations to the forecast

forcing. The fractional reduction in error in ST Pr by

perfect response approximation is then

de
ypr

5 12
E[F

o
(x)2 y2o]

V[y
o
]e

y

. (3)

Conversely, F(xo) represents the ‘‘perfect forcing’’ ap-

proximation. The fractional reduction in error in ST Pr

by perfect forcing is

de
ypf

5 12
E[F(x

o
)2 y2o]

V[y
o
]e

y

. (4)

This process is visualized in Fig. 2b. The black line

represents the least squares approximation of a hypo-

thetical set of ST Pr observations to a set of hypothetical

ST BUF observations. In this hypothetical case, all ob-

servations lie on the line, such that the normalized error

ey of the least squares fit is 0. The slope of the line rep-

resents F(x)o. The blue line and blue diamonds are a set

of hypothetical model forecasts of ST Pr and ST BUF.

While the model underpredicts ST BUF, its response

function (slope) is higher than the observed. This hy-

pothetical set of forecasts has ey 5 1.548, suggesting that

the mean error in forecast ST Pr is 154% of the ST Pr

variance. The remaining lines in Fig. 2b represent a

perfect forcing correction (green upward triangles) and

perfect response correction (purple downward tri-

angles) applied to the hypothetical model, respectively.

Each has a different impact (deypf, deypr) on the resulting

normalized error in predicted ST Pr, shown in the inset

of the figure. For this hypothetical case, correcting the

model response function lowers prediction error, while

correcting the forcing greatly increases the prediction

error, because the flawed model response function in the

hypothetical example causes much too great precipitation

response given realistic forcing. The function F(x)o is es-

timated from the sample of historical observations at the

ARO that reside within the domain (range) of ST BUF

(ST Pr) defined by the LND cases. This corresponds to a

sample size of 52. The function F(x) is estimated forWRF

and GFSRe by each LND case forecast binned by the

three lead-time verification bins. This procedure yielded a

sample size of 20 for each WRF and GFSRe.

d. Sonde data processing

Each dropsonde is processed by vertical smoothing

onto isobaric surfaces every 25hPa from 1000 to 300hPa.

The diagnostic variables calculated include IVT, moist

Brunt–Väisälä frequency N2
m following Ralph et al.

(2005), and equivalent potential temperature ue as ap-

proximated in Stull (2012). The dropsondes report
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an observation approximately every 1 s; however, we

assign a static observation time for each sonde that

corresponds to the mean time of its transect.

Two of the 15 total transect observing periods re-

quired unique processing. Those are transect 1 on

7 February 2014 and transect 4 on 11 February 2014.

Both of these transects are a composite of two spatially

offset flight tracks.

e. Transect compositing procedure

To derive AR-normal composite cross sections, it was

necessary to align the dynamical features within each AR

transect. First, each individual dropsonde is linearly in-

terpolated to a gridded AR-normal transect with a reso-

lution of 50km. Second, a common center among the

transects is defined as the dropsonde with maximum IVT

and the endpoints defined by most poleward and equator-

ward sondes. Finally, a composite of the transects is created

by taking the arithmeticmean of the interpolated transects.

f. NWP forecast to observation interpolation

1) SPATIAL INTERPOLATION TO SONDES AND

TEMPORAL INTERPOLATION

Forecasts from GFSRe and WRF 9km have been spa-

tially interpolated from their native grids to the dropsonde

Earth-relative location using a bilinear method. There are

two sources of temporal uncertainty in our methods. First,

no attempt has beenmade to temporally interpolate NWP

output to sonde report time. To create composite drop-

sonde transects, wemust assume stationarity in the AR up

to the longest time between transect start and end. This

time is 2h and 27min, or very near the 3-h output interval

for each model. Second, the GFSRe duty cycle is 24h, but

the valid time of any given observation may occur any-

where in the diurnal cycle. The sources of temporal un-

certainty above lead primarily to random temporal

imprecision in model to observation matching, though we

cannot rule out that these sources of temporal imprecision

will accumulate to nonzero residual. Because their tem-

poral offset is likely to be much larger than the time a

dropsonde takes to profile the atmosphere below flight

level, no effort is made to account for the sonde drift in

the forecast interpolation. The location used is themean of

the individual sonde latitude and longitude reports.

2) ATMOSPHERIC RIVER OBSERVATORY

NWP forecast output from all models was bilinearly

interpolated to both ARO locations. Model output was

also linearly interpolated from the model native co-

ordinate to the effective retrieval heights (m AGL) of

the 449-MHz wind profiling radar.

FIG. 2. (a) ST Pr and ST BUF at the ARO for 171 historical rain events (dark gray dots) and the linear trend line

resulting from a least squares fit (red line). The correlation coefficient R2and ey that result from the least squares fit

are provided.Also provided is one example from the LND case list of the observed (orange circle), GFSRe forecast

(orange asterisk) and WRF 3 km forecast (orange circle and cross). The segments A and B represent the non-

dimensional distance measured by exy. (b) Example of a set of observed (black circles) ST Pr and ST BUF and the

linear relationship found from a least squares fit (black line). The blue diamonds (blue line) show a set of hypo-

thetical model predictions of ST Pr and ST BUF and its linear fit. Parameter ey from the hypothetical model

predictions is provided in the inset. Green (purple) lines and upward (downward) triangles represent the perfect

forcing (response) linear correction to the hypothetical model prediction. Parameters deypf and deypr resulting from

the perfect forcing and response corrections are also provided in the inset.
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3) NCEP STAGE IV QPE

Model output was bilinearly interpolated from native

grids to the locations of the NCEP Stage IV QPE

product. Model output was masked thereafter to ex-

clude any points lying outside the boundaries of the

RRW. Watershed boundaries were defined by a geore-

ferenced shapefile created by theUSGS.Masking by the

shapefile polygon was performed using NCAR Com-

mand Language version 6.2 (http://www.ncl.ucar.edu/).

4. Results

a. Predictability limit in AR state variables

GFSRe predictive skill for lead times 24–144h is dis-

played in Fig. 3a. BSS is estimated for z500, u925e , IWV, and

IVT as described in section 3b. Only sondes for which

IVT $ 250kgm21 s21 were retained for the analysis,

yielding a sample of 145 dropsondes. Upper (lower)

whiskers represent maximum (minimum) BSS, upper

(lower) box bounds represent upper (lower) quartile

BSS, and the box center line represents median BSS.

For ti , 84 h, GFSRe forecasts of these state variables

add value to a climatology forecast. Forecasts of z500

have the highest expected skill, and skill remains very

high even for longer lead times. IWV and IVT display

the least skill and most skill degradation. These vari-

ables are those traditionally used to identify and track

ARs (Dettinger 2011; Lavers et al. 2012; Wick et al.

2013a; Guan et al. 2013), and thus we consider the

GFSRe predictability limit to exist in the window 84h

# ti # 107 h. Figure 3b similarly shows predictive skill

for WRF 9km. Behavior is not significantly different

for most variables and lead times, and we consider

the predictability limit to similarly be met for 84 h

# ti # 107h.

The value added by WRF 9km to GFSRe for the first

six lead times considered is displayed in Fig. 3c. From

Fig. 3c it is apparent that WRF 9km adds value to

GFSRe for AR state variables between 36h# ti # 83h.

Details such as maximum value added and the range of

lead times for which value is added/lost vary by variable,

with most value added for z500 and least for u925e .

We recreated the analysis in Fig. 3 using GFS 0.25 as

the GNWP and West-WRF 9km. This companion

analysis is shown in the supplemental material as Fig. S3.

When the parent model is GFS 0.25, WRF 9km adds

value for 84 h # ti for forecasts of IWV, IVT, and u925e .

For z500, the value-added range is delayed to 108h # ti.

For some variables, notably IVT, BSS varied consider-

ably with lead time. This may be a result of the smaller

number CalWater 2 sonde matching forecasts available

for GFS 0.25.We do not declare a predictability limit for

the GFS 0.25 forecasts for this reason.

b. Vertical structures of AR static stability

We investigated the predictive skill in forecasts of

moist static stability by GFSRe andWRF 9km from the

sample of dropsondes for which IVT $ 500 kgm21 s21.

This analysis is shown in Fig. 4 using the normalized

mean-square error and bias in forecast moist Brunt–

Väisälä frequency N2
m. The center panel displays a

vertical profile of median CalWater dropsonde N2
m ob-

servations evaluated every 25hPa from 1000 to 600 hPa.

The typical value of N2
m reported in Ralph et al. (2005)

varies near 1–2 3 10 24 s22 from the ocean’s surface to

FIG. 3. (a) Value added by GFSRe over GFSRe climatology validated against 145 CalWater 2 dropsondes for the state variables z500

(blue), IVT (black), IWV (green), and u925e (red). (b) As in (a), but the variable is WRF 9 km value added over GFSRe climatology. (c) As

in (b), but the reference forecast is GFSRe.

JULY 2018 MART IN ET AL . 1105

http://www.ncl.ucar.edu/


600hPa. The measurements we report here appear to be

slightly higher near the surface but relax to a similar

profile above 900hPa. We attribute this difference to

different sonde selection criteria and potentially different

AR environments. The remaining panels display WRF

9km (left side) andGFSRe (right side) normalizedmean-

square error and normalized bias inN2
m for the three lead-

time verification bins. Lead time increases from the top of

Fig. 4 toward the bottom. Normalized mean-square error

is calculated following the formula for ey, with forecast

(observed) N2
m standing in for y (yo), respectively. Nor-

malized bias is calculated asE[y2 yo]/
ffiffiffiffiffiffiffiffiffiffiffiffi
V[yo]

p
. Themean

normalized bias in the GFSRe (WRF 9km) forecasts is

very similar for all lead times, both in maximum/mini-

mum bias and in mean profile. Forecasts by WRF 9km

andGFSReare both too unstable at levels below 850hPa.

Biases then become positive as model pressure decreases

toward 600hPa. Normalized mean-square errors ey typi-

cally maximize near 925hPa in both models across all

lead times. This is near the mean LLJ level in the com-

posite observational transect (Fig. 5). The exception is ey
forGFSRe for 12h# ti # 59h. In this profile (upper-right

panel), mean-square errors maximize at 2.5 times the

observational variance (;5.5 3 1024 s24) at the upper

end of the profile. For all other lead times, GFSRemean-

square error profiles are similar to WRF 9km, but max-

imum errors are consistently greater in GFSRe by a

fraction of the observational variance. The average sim-

ulated AR core is therefore more unstable than it should

be near the AR LLJ. If moisture transport is properly

simulated, this unstable bias may lead to more pre-

cipitation than should be expected by orographic uplift

of a moist-neutral layer, though the effect should be

similar in both models.

c. Vertical structures of AR core horizontal vapor
transport

Figure 5a displays the composite AR cross sections of

dIVT from the OCN case AR core transects. The

methodology for constructing each cross section is dis-

cussed in section 3f. The center panel in Fig. 5 displays

the observed composite. In this panel, there is a strong

local maximum in water vapor flux near 900 hPa located

at the analyzed AR core center. This water vapor flux

maximum is located just below a weak composite LLJ

(isotach composite, not shown). Equivalent potential

temperature isotherms in Fig. 5 show the composite AR

core straddling a baroclinic zone with temperatures

decreasing poleward of the core center. This composite

structure is consistent withAR cross sections reported in

Cordeira et al. (2013) and Ralph et al. (2016).

The remaining panels in Fig. 5 display the mean dIVT

error (forecast minus observed) composite in WRF and

GFSRe for the three lead-time verification bins. Over-

laid in each is the composite forecast ue. It is apparent

that these errors in water vapor flux are spatially het-

erogeneous and that errors are more likely to be positive

above 700 hPa and more likely to be negative near the

mean LLJ position for both models. Composites were

made for each individual variable contributing to water

vapor flux (wind speed and water vapormixing ratio, not

shown). It was found that the errors in each are spatially

correlated with each other and with dIVT. Model levels

at pressures less than 700 hPa in each model composite

are toomoist and wind speeds are too fast, while the LLJ

region in each model composite is too dry and wind

speeds are too slow. Several authors (Thorpe and

Clough 1991; Dudhia 1993; Lafore et al. 1994;

Wakimoto and Murphey 2008) have observed a sub-

geostrophic polar jet in conjunction with a super-

geostrophic LLJ in midlatitude cyclones containing

strong cold fronts. The results reported here are con-

sistent with the hypothesis that the model is too geo-

strophic and may be inadequately representing the

ageostrophic winds. The upper troposphere positive bias

in dIVT is significant at the p, 0:05 level at short lead

times only. Negative biases in dIVT near the mean LLJ

position do not become significant at the p, 0:05 level

until the later lead times. In the absence of model cli-

matology for LLJ dIVT, the significance of the t test can

be interpreted as indicating the predictability limit has

been exceeded for these regions. Negative biases in

dIVT are strongest in the LLJ, a feature found to be

critically important to driving heavy orographic pre-

cipitation (Browning et al. 1974; Bader and Roach 1977;

Neiman et al. 2002; Smith et al. 2010), and are quite

similar in spatial extent and magnitude for both models.

d. Deterministic QPF skill during landfalling AR

Value histograms forWRF 3km andGFSRe STQPF at

NCEP Stage IV grid points within the RRW for the three

lead-time verification bins are shown in Fig. 6. Figure 6 also

displays the LND case ST QPE histogram. ST QPE from

the cases investigated had median and upper (lower)

quartile values of 61 and 97 (41) mm. For short lead times

(Fig. 6a), the WRF 3km QPF histogram most closely re-

sembles the QPE histogram. The inset tables in Fig. 6 dis-

play mean QPF 2 QPE (Bias), the standard deviation of

QPF2QPE (s), and the root-mean-square error (RMSE)

QPF2 QPE for both WRF 3km and GFSRe. Both WRF

3km and GFSRe produce low-biased ST QPF across lead

times. For ti # 59h, WRF 3km accumulation bias is 5%

greater in magnitude relative to median QPE than for

GFSRe. For other lead times, bias becomes similar.

For ti # 108h, WRF 3km produces a smaller range in

accumulation error (s is 10% smaller relative to median
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QPE). For ti # 108 h, WRF 3kmRMSE is 5%–7% less

than GFSRe as a fraction of median QPE, while for

ti . 108 h, GFSRe displays an advantage that is similar

in magnitude. WRF 3km produces total precipitation

greater than 140mm (near the upper 10% value for

QPE) with nonzero frequency. GFSRe, however,

does not produce these upper 10% values. This last

advantage WRF displays is likely related to higher

spatial resolution.

Analysis from Fig. 6 does not definitively answer

whetherWRF 3km or GFSReQPF is more accurate for

RRW landfalling AR. Neither WRF 3km nor GFSRe

distinguished itself in a large or consistent manner over

the lead times considered. Thus far, we have seen that

FIG. 4. (top) Normalized mean-square error [Eq. (2)] in N2
m (solid, bottom axis) and normalized bias E[y2 yo]/

ffiffiffiffiffiffiffiffiffiffiffiffi
V[yo]

p
inN2

m (dashed,

top axis) for 12 h # ti # 59 h. The left panel displays mean error in the WRF 9 km (blue) interpolated soundings, and the right panel

displays the same quantity for GFSRe (red). (middle) As in the top row, but for 60 h # ti # 107 h in the left and right panels. The center

panel displays the observedmedianN2
m (1024 s22, black circles) from all CalWater sondes satisfying the ‘‘AR core’’ criterion (section 3b).

The interquartile range in N2
m is shown by dashed lines. (bottom) As in the top row, but for 108 h # ti # 155 h.
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the WRF and GFSRe systems display minor strengths

relative to each other in AR state, structure, and RRW

QPF, but on balance perform with similar accuracy.

However, we cannot simply assume that the QPF

performance result follows from the predictive skill in

dIVT and static stability. Each model may arrive at its

simulated precipitation uninformed by the correct oro-

graphic forcing–response relationship. If so, we cannot

FIG. 5. (top) OCN case mean AR normal–vertical transect of dIVT error (model minus observation; kg m21 s21; color fill), and u925e (K;

black dashed lines) for 12 h# ti # 59 h. The left panel displays mean error in the WRF 9 km transects, and the right panel displays same

quantity for GFSRe. Stippling indicates significance at p, 0:05 according to a Student’s t test. (middle) As in the top row, but for 60 h

# ti # 107 h in the left and right panels. The center panel displays the observed ensemblemean dIVT (kgm21 s21; blue solid lines) and u925e

(K; black dashed lines). (bottom) As in the top row, but for 108 h # ti # 155 h.
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expect improvements in model forcing accuracy (e.g.,

improvements in the skill from Figs. 4 and 5) to lead to

improvements in precipitation skill.

e. Relationships between orographic forcing and
response

To adequately address the second goal posed in the

introduction, wemust investigate eachmodel’s ability to

accurately reproduce the observed forcing–response

relationship during an AR. To this end, we turn to the

10-yr record of bulk upslope vapor flux andmountaintop

precipitation collected at the ARO. Figure 7a shows the

observed, GFSRe simulated, and WRF 3km simulated

ST BUF–ST Pr relationship for 60 h # ti # 107 h exy for

WRF 3km and GFSRe in the inset table. Parameter exy
is also listed for the three lead-time verification bins in

Table 5. Note that WRF 3km reduces exy by 37%–80%

compared toGFSRe. The reader can qualitatively assess

the accuracy of each model in representing the multi-

factor forcing–response error by matching a triplet of

observation, GFSRe, andWRF 3km symbols for a given

color. A unique color is assigned to each LND event

forecast or observation; otherwise, colors in Fig. 7a are

meaningless. Table 5 additionally presents ey, the error

in storm-total precipitation for both models normalized

to the observed variance. WRF 3km also outperforms

GFSRe by 18%–69% in this metric.

From Fig. 7a and Table 5 we conclude that WRF 3km

better predicts the multifactor orographic forcing–

response at the ARO. We are also interested in asking

the following questions of both models: do errors in ST

Pr during ARs arise primarily due to errors in forcing or

in the response, and which model may benefit from ad-

justments to accuracy in either forcing or the response

relationship? To investigate this, we present deypf and

deypr (see section 3c) in Table 5.

To interpret the dey metrics, we must also compare

the model’s linearized response relationship (slope;

also reported in Table 5) to the observed. Figure 7b

graphically displays the linearized response relation-

ship from observations, GFSRe forecasts, and WRF

3km forecasts at lead times 60 h # ti # 107 h. The

markers display the least squares derived ST Pr for the

given ST BUF. The slope and the correlation co-

efficient resulting from the least squares fit are also

provided in the inset. Note that the WRF 3km slope is

much closer to the observed than is the GFSRe. As we

will see, the more accurate response relationship sim-

ulated in WRF 3km will allow both improvements in

forcing accuracy or response accuracy to result in im-

proved ST Pr prediction.

WRF deypf and deypr both become negative for ti $

60 h. At these lead times, both ST BUF and ST Pr are

biased low compared to observations (e.g., WRF least

squares fit line is low and to the left of observations in

Fig. 7b), but the slope of the response relationship is

very near that of the observed. This suggests that ifWRF

forecast ST BUF improves, more accurate WRF ST Pr

would result, as reflected by deypf forWRF at ti $ 60 h in

Table 5. WRF deypr suggests that ST Pr could also im-

prove by further tuning the precipitation response re-

lationship, though not by asmuch. ForWRF at ti # 60h,

imposing observational ST BUF or response relation-

ship does not improve forecast ST Pr. At these lead

times ey is less than 1.0, suggesting that WRF forecast

error is smaller than the observed variance in pre-

cipitation and substituting the observed forcing (re-

sponse) is not effective.

FIG. 6. (a) Value histogram for RRW ST QPE (NCEP Stage IV; green bars), WRF (blue x), and GFSRe (red 1). ST QPF calculated

from 12 h# ti # 59 h. The inset showsWRF andGFSRemeanBias, s, andRMSEQPF2QPE from all RRWStage IV grid points. (b)As

in (a), but for 60 h # ti # 107 h. (c) As in (a), but for 108 h # ti # 155 h.
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In contrast, GFSRe deypf is nonnegative and GFSRe

ey . 1:0 for all ti. This suggests that the GFSRe response

relationship is not accurate enough to translate im-

proved ST BUF into improved ST Pr. Examining Table 5

confirms that the slope of the derived linear relationship

for GFSRe is not similar to the observed at any ti.

GFSRe deypr suggests that accuracy in ST Pr could be

improved if the response relationship is made more ac-

curate, though not to the same degree as for WRF.

We also recreated the analyses in Fig. 7 and Table 5

using GFS 0.25 and the companion WRF 3km forecasts

usingGFS 0.25 as initial and boundary conditions. These

analyses can be found in Fig. S7 and Table S6, re-

spectively. The broad results from the above section

apply when comparing GFS 0.25 to its downscaledWRF

forecasts: WRF reduces exy by as much as 81%. Simi-

larly, substituting the observed forcing or response re-

lationship reduces precipitation error in WRF, but only

substituting the observed response relationship reduces

precipitation error in GFS 0.25 forecasts. This latter

point is likewise because the linearized response re-

lationship for GFS 0.25 renders precipitation insensitive

FIG. 7. (a) ST Pr and ST BUF at the ARO for all LND observed (colored circles), GFSRe forecasts (colored

asterisk), andWRF forecasts (colored circle and cross) with lead times 60 h# ti # 83 h. The inset table displays exy
for each model. The red line is the trend line from all historical ARO events as shown in Fig. 2a. A unique color is

assigned to each LNDevent forecast or observation. The specific color carries no special meaning. (b) As in (a), but

black line displays linear fit of LND observed ST Pr to observed ST BUF. Black circles are data points regressed to

lie along the best fit line. The red line (asterisks) similarly displays the linear fit derived from GFSRe forecasts and

the blue line (circle and cross symbols) similarly displays the linear fit of WRF 9 km forecasts. The inset table

displays slope and correlation coefficients of the linear fits.

TABLE 5. Measures of error for ST storm-scale forcing and local-scale response, as well as reduction of error in response by prescribing

linearized ARO observed forcing and response to GFSRe and WRF LND case forecasts.

Lead time (h) 12 # ti # 59 60 # ti # 107 108 # ti # 155

Error measure (see sections 3b, 3c) Model

exy GFSRe 4.287 4.530 7.370

WRF 0.820 2.253 4.653

ey GFSRe 1.544 2.072 2.568

WRF 0.470 1.295 2.109

deypf GFSRe 18.1% 14.2% 0.0%

WRF 10.7% 257.6% 278.1%

deypr GFSRe 18.9% 235.0% 219.3%

WRF 20.4% 247.2% 251.9%

Linear slope (mm s cm21 m21) Model/obs

GFSRe 0.003 20.003 0.005

WRF 0.084 0.099 0.091

Obs 0.094 0.094 0.094
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to BUF. The primary difference in the companion

analysis presented in the supplemental material is that

the linearized response relationship for WRF forced by

GFS 0.25 changes from its GFSRe-forced counterpart,

from 0.091 to 0.049mms cm21m21.

5. Discussion

This study is the first to investigate predictability limit

of AR state and AR core variables by GNWP and

RNWP and to relate deficiencies in those to AR pre-

cipitation skill by measuring the error in the simulated

orographic forcing–response relationship. It was found

that WRF 9km is capable of adding value to its parent

GNWP by means of dynamical downscaling for a subset

of medium-range weather prediction time scales. This

result suggests that assimilation of observations into the

coarse domain at model native scales may additionally

improve forecasts created by WRF 9km.

Generally, WRF 9km and GFSRe forecasts of AR

vertical and transport-normal structures were found to

reproduce realistic vapor transport in the LLJ region of

ARs at short lead times, but forecasts of LLJ water va-

por flux were found to develop significant low bias by

ti . 108 h lead times. Forecasts of moist static stability in

the ARs were too unstable at lower levels and too stable

at pressures below 600hPa, but these forecast errors

were similar for both models, especially at short lead

times for all models. TheGNWP considered (theGlobal

Forecast System) is capable of producing ARs realistic

in structure at sufficiently short lead time. If well con-

structed, RNWP forecasts downscaled from the same

GNWP can as well.

WRF 3km and GFSRe displayed similar accuracy in

predicting RRW storm-total precipitation during the

AR considered. As lead time increased, both models

produced a significant dry bias compared to the ob-

served accumulated precipitation distribution. This

finding may follow from the inability of both models to

produce a strong AR LLJ at longer lead times (Fig. 5).

The authors note that tuning of the parameterized

physics submodels inWRF for the purpose of accurately

predicting AR precipitation has not been done and that

QPF smoothed to lower resolutions (e.g., the difference

in resolution between WRF 3km and GFSRe) has been

shown to result in higher skill scores over complex ter-

rain (Mass et al. 2002).

When predicting storm-total precipitation at a moun-

taintop well known to be orographically productive

(CZC),WRF improves uponGFSRemean-square error

by as much as 69% at short lead times. It appears that

this improvement occurs primarily because WRF bet-

ter reproduces the relationship between orographic

forcing (approximated by ST BUF) and response (ST

Pr at CZC). This can be seen visually in Figs. 7a and

7b and quantitatively in Table 5. WRF 3 km very

accurately reproduces the ST BUF–ST Pr relation-

ship found through observations during the AR cases

studied.

It is found that improvement in WRF QPF can be

expected through either more accurate forcing (e.g.,

data assimilation) or response (e.g., parameterized

physics tuning).WRF forcing at theAROwas often low-

biased, in agreement with the low-bias in LLJ dIVT

(Fig. 7). Thus, the consistent underprediction of RRW

ST Pr (Fig. 6) is partially caused by storm-scale forcing

that is too weak. This cause-and-effect relationship

cannot be verified for GFSRe, since STBUF errors from

GFSRe are more randomly distributed (Fig. 7b) and

since the local response relationship is not similar to that

observed.

The analysis presented herein suggests that im-

provements to either forcing or orographic precipita-

tion response will straightforwardly lead to more

accurate precipitation in WRF or similar RNWP. This

is true even at lead times approaching 7 days. There-

fore, WRF may be an attractive option to produce

skillful QPF for regions in which heavy rain events are

dominated by atmospheric rivers, especially given in-

tensive work to develop data assimilation techniques to

address the low bias found in LLJ water vapor flux and

to develop more accurate parameterizations of key

subgrid-scale processes such as surface energy fluxes

and cloud microphysics.
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